
 

1 CHAPTER 1 

Modeling of structures 

by Finite Elements 
 

 

1.1 Introduction 

 

Every time a model is created, an abstraction of reality takes place; that is to say, 

we try to lead back to known and simplified schemes that can give an interpretation of 

reality itself. For example, Solid Mechanics provides us with the analytical solution 

for the behavior of beams subjected to the action of loads. However we know that De 

Saint Venant's relations are valid under at least one restrictive hypothesis: the beam 

must be a one-dimensional body, in the sense that the two transversal dimensions must 

be negligible with respect to the axial length. And this represents just a model of real-

ity, a simplification that provides very valid results in many technical cases. 

However, it is often abused, arbitrarily extending the validity of this model beyond 

its inherent limits and violating the assumptions under which it was originally created. 

In order to cross this and other boundaries, without risking to obtain unreliable cal-

culation results, it was necessary to develop a method of general validity, which would 

suffer in a smaller degree from the limitations imposed by assumptions that are too re-

strictive and linked to particular cases. 

It goes without saying that the ideal method would be the one that allows to solve in 

analytical form the mixed system of algebraic and partial differential equations that 

describe the elastic problem (and that we report synthetically in Appendix A). How-

ever, the analytical solution presents practically unsurmountable difficulties, except in 

particular cases that, as such, frustrate the attempt of generalization. 

Here then comes the idea of developing a method that could solve the system at 

least in a domain limited in space and with a simple geometric shape: in this way, 

subdividing the domain of interest, certainly larger and with a more articulated geome-

try, in an appropriate number of simple subdomains for which the solution is known, it 

is possible to obtain the solution of the original problem "reassembling" adequately 

the partial results. 

In this way the problem has been discretized and the solution obtained is certainly 

an approximation of reality, but in practical engineering cases this result is more than 

satisfactory. 

The subdomains into which the source domain is discretized are called Finite Ele-

ments. 

However, even solving the elastic problem within a single element is no small mat-

ter. In order to proceed it is necessary to introduce a further approximation and impose 

that the displacement of a generic point within the element is a function (linear, para-

bolic, bilinear, etc. in relation to the characteristics of the element) of the displace-

ments of predefined points (called nodes) of the element itself. These relations are 

called Shape Functions. These are nothing more than equations that govern the dis-
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placement of all points within the element, in relation to how the nodes that belong to 

the element move (in Appendix B more details on the Shape Functions can be found, 

at least for the plane stress state, and on the use that the Finite Element Method makes 

of them). 

From what has been said, and from what is reported in Appendix A, it is clear that 

from the knowledge of the displacement components of the nodes, which connect each 

other the elements in which the structure has been divided, it is possible to go back to 

the strain and stress states of the structure itself. The Finite Element Method (FEM) is 

therefore based on the "method of displacements", which is taught in Solid Mechanics 

courses for the resolution of statically indeterminate structures; the only result in out-

put from a FEM calculation code, following the solution of the equations, is precisely 

the field of nodal displacements: all the other quantities are derived from here. 

So, in order to analyze any given structure using the Finite Element Method, it is 

necessary to proceed through some points, briefly indicated below: 

• identification of the type of element to be used, in relation to the geometry 

of the structure and to the phenomenon that is to be investigated 

• subdivision of the structure into an "adequate" number of elements 

• imposition of boundary conditions (constraints and loads) 

• resolution of the equations that derive from the model 

• interpretation of results 

Each of these steps, more or less borne by the user, represents a criticality and can 

frustrate all the others. 

For example, a mesh with elements of very poor "numerical quality" will certainly 

cause difficulties for the solving algorithm, as we will see in Chapter 6, and will com-

promise the validity of the results. Or a "perfect" model can be subjected to the solu-

tion by a mediocre code, generating results of poor quality. Or still the not perfect un-

derstanding of the physics that is at the base of the phenomena that are to be investi-

gated can lead to the creation of an incorrect model (wrong type of element, wrong 

boundary conditions, inadequate description of the material, etc.). 

The interpretation of the results is the phase that mostly lays its foundations on the 

preparation of the structural engineer. It must never be forgotten, in fact, that the com-

puter, and all the calculation codes implemented on it, are only tools to manage and 

manipulate equations and numbers. Only the engineering judgment of the structural 

engineer can validate the results of a calculation. 

 

 

1.2 Modeling with 2D elements 
 

Clearly the best element is the one that can represent any stress and strain state, in 

its generality. However, there are conditions in which the problems can be reduced to 

simpler cases, without losing the accuracy of the results. In virtue of this fact special 

finite elements have been created (for more details see Appendix A). 

In this section we will focus on the implementation of plane models, meaning that 

the equations governing them are those presented in § A.5, A.6, and A.7. 
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In general to resort to the simplification means to have smaller difficulties in the re-

alization of the model (that translates in smaller possibilities of error), smaller times of 

calculation, more contained dimensions of the files. It is therefore always desirable to 

employ plane models, provided obviously that the simplification is lawful. 

 

 

1.2.1 Plane stress 

As it can be seen from § A.5, a plane stress state occurs when: 

 

0ττσ xzyzzz ===  

 

A sufficient condition to have σzz = 0 is that the thickness (which extends in the z-

direction) is "small" compared to the other two dimensions of the structure. This is the 

case, for example, with sheet metal. 

A sufficient condition for having τyz and τxz = 0 is that the thin structure in consid-

eration is not loaded with shear forces normal to its surface. From all of the above, it is 

apparent that in order to model a structure with plane stress state elements, it is neces-

sary that the forces that stress it belong to the same plane in which the structure lies. 

A case of a plane stress state, for example, is represented by spur gears where the 

thickness is small relative to the other dimensions. 

 

 

 

 
Figure 1.1. Spur gear. Thickness = 

3mm, modulus = 3.2 mm, number of 

teeth = 36, pitch diameter = 115.2 

mm. 

Figure 1.2. Finite element model in plane stress state 

for the gear in Figure 1.1. Note how the loaded tooth 

has been divided into more elements than the others. 

 

Figure 1.1 shows the 3D CAD model of a gear satisfying the plane stress state as-

sumptions; figure 1.2 illustrates the corresponding finite element model. Lastly, in fig-



 

 
Computational Structural Engineering 

24 

ure 1.3 we depict the plotting of the equivalent Von Mises stress for the engaged 

tooth. 

Here the equivalent Von Mises stress has been given, but it is possible to request 

any quantity, for example the maximum and minimum principal stresses, or the  shear 

stress. It must be clear, however, that if one were to request the behavior of the stress 

tensor component normal to the gear surface (σzz), one would get a uniform coloring 

and a color scale full of zeros. We know, in fact, that we are dealing with a plane 

stress state. 

 

 

 
Figure 1.3. The results of the calculation. In 

this case, the equivalent Von Mises stress is re-

presented (maximum value equal to 101 MPa). 

Figure 1.4. Solid finite element model for 

the gear in figure 1.1. 

 

 

To carry out a comparison we build a model with solid elements (valid for model-

ing 3D structures), which allows us to reproduce the geometry of the part more faith-

fully. In this way we can compare the results we will obtain from the more refined but 

"heavier" model with those of the plane model. 

Figure 1.4 illustrates the brick element model.3 elements were placed in the thick-

ness, to try to capture the variation in tension σzz as well, which is not possible with 

the plane model. 

Figure 1.5 shows the Von Mises equivalent stress contour for the 3D model, while 

figure 1.6 shows the stress σzz. 

The differences in the results provided by the two models are less than 2%, an abso-

lutely acceptable error in all cases of the technique. We then observe that the σzz stress 

appears to be decisively negligible compared to the other stresses involved. This com-

forts us on the validity of the results given by the plane stress model. 
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Figure 1.5. Von Mises equivalent stress 

(maximum value is 99.7 MPa). 
Figure 1.6. σzz stress (maximum value is 5.0 

MPa). 

 

 

Remarks 

On a practical level, to realize a plane stress model means to indicate to the calcula-

tion code the type of element that is being used (and generally this operation is done 

by means of the graphic pre-processor); one must be careful because many finite ele-

ment programs require that the element lie in one of the three planes of the global ref-

erence system (xy, yz or xz); clearly an incorrect positioning will produce an error 

message from the solver. Since the plane model has no physical thickness, this addi-

tional information must also be passed to the code. 

The plane model results decisively more compact (303 KB for the input file, 1460 

KB for the results file) in comparison to its "elder brother" 3D (1435 KB for the input 

file, 5804 KB for the results file); correspondingly also the times of calculation are 

more reduced. Even if today the power of the processors and the capacities of the mass 

memories do not represent anymore a limitation, simplifications reduce anyway the 

possibilities of error. 

The mesh was refined at the loaded tooth; this allows the strain and stress gradients 

to be adequately captured, ensuring good results while reducing the number of equa-

tions. We will come back to the importance of mesh density in Chapter 6. 

Looking at the geometry of the gear as a whole and thinking about how this type of 

organ works, it would have been possible to avoid modeling all the teeth, limiting the 

model to only the two or three teeth adjacent to the loaded one. This would have been 

another valid simplification. 

The σzz of figure 1. 6, then, presents at the base of the tooth opposite signs: on the 

loaded side, in particular, it is negative, while from the opposite side it is positive; this 

fact should not be surprising since the tooth, basically, works in bending and therefore 

the loaded side will see the fibers stretched and the opposite side will see compression: 

it follows that from the stretched side the material will tend to contract (due to the 

Poisson coefficient), generating a negative σzz, while from the compressed side it will 

tend to expand, generating a positive σzz. 
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1.2.2 Plane strain 

Dual to the plane strain state is the plane strain regime. As it can be seen in Appen-

dix A, a strain state is plane when: 

 

0γγε xzyzzz ===  

 

In this case necessary condition to have εzz = 0 is that the dimension normal to the 

plane in which the structure lies is preponderant with respect to the others. For exam-

ple, if the gear in figure 1.1 had a 15 mm thickness instead of 3 mm, we could already 

be talking about plane strain. 

Similarly to what happens for the plane stress state to have γyz = γxz = 0 it is neces-

sary that the structure is loaded with forces that lie in the plane to which the structure 

belongs. 

The equations governing the plane strain regime are those reported in § A.6. We 

observe that in this case the component σzz of the stress tensor is not zero, due to the 

transverse contraction coefficient (see eq. A.13). 

As an example in this case we will calculate the stress state arising inside a thick 

and long cylinder, in a section away from flanges or edges that may alter the load path, 

when a pressure p = 50 MPa acts inside it. 

The stress in the tangential direction (σt), according to the Lamé formulas, is worth: 
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being De the external diameter, Di the internal diameter interno, d the generic diameter 
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Let us assume that it is De = 200 mm, Di = 100 mm. With these values, the tangen-

tial stress, at the intrados (d = 100) and at the extrados (d = 200), is worth: 

 

σti = 83 MPa 

σte = 33 MPa 

 

These are the analytical values to be compared with the numerical calculation. 

Figure 1.7 contains the plane strain finite element model for a section of the cylin-

der. 

 


