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13.7 Elastomeric materials 

 

13.7.1 Introduction 

Elastomeric materials (rubbers), as mentioned above, can undergo large deforma-

tions and have a nonlinear behavior even for low applied loads; the peculiarity is that 

these deformations are in any case elastic, i.e. when external forces are removed, no 

matter how large the deformation, the material recovers its original shape (unless, of 

course, the breaking point is reached at any point). 

Another peculiarity is that they are incompressible, i.e. they have a Poisson's coeffi-

cient ν very close to 0.5: in fact, defined the modulus of compressibility as 
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= , it is seen that by putting ν = 0.5 we obtain an infinite value, while for 

a steel, for example, we have β = 171700 MPa (being E = 206000 MPa and ν = 0.3). 

This peculiarity also creates another problem in the stress-strain relationship (see 

Equations A.2 in Appendix A), where for any value of the strains we would have infi-

nite stresses. 

Elastomeric, or hyperelastic, materials therefore need special constitutive laws, on 

which we will not spend a single word. Here it is enough for us to say that computa-

tional codes capable of handling elastomeric materials must also have libraries of hy-

perelastic elements. 

Clearly the numerical models to manage the behavior of these materials are quite 

complex and there are different types, each of which can adapt more or less well to the 

actual behavior of the rubber with which the component is made. The data in literature 

are few, also because if the metallic materials available in commerce are already sev-

eral, for the polymeric ones or for the rubbers we are talking about a real immensity; it 

follows that, if we have to realize and analyze a model that includes parts realized with 

hyperelastic materials, it is necessary to have available also the data that characterize 

these materials and from these try to understand which, among the various models of 

behavior available (Mooney-Rivlen, Ogden, Marlow, Arruda-Boyce, etc.), better 

represents the behavior. Fortunately, some calculation codes have special tools that, 

starting from experimental data, try to find which behavior model better represents the 

experimental data. 

And while we are on the subject of experimental tests, let's say right away that the 

minimum requirement for performing a calculation on a rubber component is a uniax-

ial tensile-compression test; since the specimen for compression tests is different from 

that for traction tests, we can already see that, compared to a metallic material, it is 

necessary to perform twice as many tests. 

In order to have greater precision it is possible to perform biaxial tests, even more 

complex than uniaxial ones, up to even more complicated and expensive tests (figure 

13.55 shows schematically the various types of tests, listed by increasing complexity, 

that can be performed on elastomeric materials): the more complex the test, the better 

the accuracy of the model used to describe the material behavior. 
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To complicate things further, the 

density and quality of the mesh neces-

sary to discretize a body modeled with 

hyperelastic elements must be consid-

ered: since they can undergo large de-

formations, these components must be 

meshed in a rather fine way and with 

high quality elements, to avoid nu-

merical errors due to the excessive 

distortion of the elements that can oc-

cur during the application of forces. 

Fortunately, in general, the required 

analyses are to be performed in the 

plane strain regime or for axisymmet-

ric geometries, such as the example in 

figure 1.19, which we will resume 

later. Since we are dealing with plane 

models, the solution is quite fast, al-

though it is often necessary to proceed 

with very small increments. When it is 

required to study an elastomeric com-

ponent with a 3D model, things, from 

the numerical point of view, become very complicated both because the number of 

degrees of freedom increases a lot and because, unfortunately, the material behavior 

model must be "satisfied" with data obtained, when it is a luxury, from biaxial tests, 

but more frequently from uniaxial tests: in these conditions numerical convergence se-

ems a utopia. 

 

 

13.7.2 Uniaxial tensile-compression test 

As mentioned, the minimum data needed are the uniaxial tensile and compres-

sion tests. 

Figure 13.56 contains a comparison between the experimental curve and the 

material model that best represents it. As it can be seen there are deviations, 

however small. We note the large deformations involved (up to 200%) in com-

parison to low stresses. The material model behaves well within the stress-strain 

values found during the test, but it becomes difficult to know what might happen 

outside these limits. 

As mentioned above, having data also from at least biaxial tests would give 

greater confidence in the numerical convergence of the structural models and the 

accuracy of the results obtained. 

 

 

Figure 13.55. Overview of different possible tests 

to be performed on elastomeric materials. 


