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14.2.7 Conclusions 

From what has been said in the preceding paragraphs, it is difficult to judge a priori 

which method is best to use, given the merits and demerits of each. However some 

general indications can be given. 

• If the model of the system to be analyzed is not too large it is better to use 

the method of direct integration, so it is possible to avoid the modal analy-

sis, especially if several modes are expected within the range of frequencies 

to be analyzed. 

• Vice versa if the model is of considerable size it is advisable to use the 

method of modal superposition; in this case remember to check the effec-

tive modal masses and to take a number of modes that gives an effective 

modal mass equal to at least 85% of the total mass (this applies to masses 

and moments of inertia), although just above we have seen that even with 

81% we had a correct answer (assuming that the most correct solution is 

that given by direct integration); we underline however that this was a defi-

nitely simple case, with a single structure and loaded only in one direction. 

• If the force has a precise frequency it is always better to use the direct inte-

gration method, thus avoiding the choice of the number of modes that 

should be involved in the modal superposition. Moreover, in this hypothe-

sis, it would be even useless a modal analysis because the study of the fre-

quency response is already sufficient. 

• Finally, it must be said that the cases in which a structure works around a 

resonance are quite rare; in fact, generally we tend to make sure to be far 

enough from the frequencies of the system. There are, however, very par-

ticular cases, such as the joining of plastic parts by means of ultrasound, 

where an element, called "sonotrode", vibrates at its resonance frequency 

and, placed in contact with the joining area, locally melts the materials cre-

ating the weld. 

• Apart from particular cases such as the one just mentioned, it could happen 

that in the transient, i.e. in that phase in which the force reaches its operat-

ing frequency (think of a centrifugal compressor that works at a very spe-

cific speed, but clearly will see the startup and shutdown), we will go to ex-

cite some frequencies away from that of operation, then it may be worth-

while to see what happens in these phases using the calculation of the re-

sponse over time (time history). 

 

 

14.3 Transient dynamic analysis 

 

This is the most general case of dynamic response. The equation to solve is always 

the (14.1), but in this case {F(t)} can vary in time, following a history that can also be 

of random type, as it happens for earthquakes and wind forces for civil structures or 

for forces induced by the irregularity of the road surface, as it happens for land vehi-

cles (for these situations, however, different methods are used, which we will mention 

later). Also in this case we can use the two solution techniques seen previously for the 



 

 
Computational Structural Engineering 

412 

harmonic analysis with the same considerations reported just above. The only differ-

ence, which is not so small, is that if it is necessary to take into account geometric, 

contact or material nonlinearities, the only method that can be used is the direct inte-

gration. 

In order to be able to describe the force F as a function of time t, calculation codes 

generally provide a table-type system that allows the input to be described by points. 

Often this information comes from other computational codes (e.g. multibody, see 

Chapter 18) or from experimental measurements. 

In this paragraph we want to highlight the reason why, sometimes, it may be con-

venient to perform a transient dynamic analysis instead of a classical static analysis 

with which too often we tend to oversimplify phenomena. In order to do this, let's con-

sider again the beam used in this Chapter, but this time with only one end clamped to 

ground and the other free, as illustrated in in figure 14.12. 

 

 

 
Figur3 14.12. Beam clamped at one end and loaded with two opposing forces. 

 

 

Similarly to what we did in the previous paragraph, we apply to the rings two verti-

cal and opposite sign forces equal to 0.5 MN according to the time history shown in 

figure 14.13. As we can see, the forces grow from zero to the maximum value in 

1/100th of a second, remain applied for 1/100th of a second and then in the same time 

they cancel again: a fast time-varying phenomenon, then. 

Since the constraint conditions have changed, the eigenfrequencies and mode 

shapes of the beam will also have changed. Therefore, if we wanted to follow the mo-

dal superposition approach we would have to perform a new modal analysis, check the 

effective modal masses and determine if the number of extracted modes is sufficient 

or if we need to repeat the calculation with more modes. We still follow both paths. 



 

 
14. Dynamic analyses 

413 

-600000

-400000

-200000

0

200000

400000

600000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [s]

F
o

rc
e

 [
N

]

 
Figure 14.13. Time history of the forces applied to the beam. 

 

 

14.3.1 Direct integration 

The first problem we have is the value to be given to the time step used to integrate 

the (14.1) with numerical methods; a rule of thumb is to use a ∆t equal to 1/100 of the 

total time for which we want to follow the phenomenon (we emphasize that here we 

refer only to the implicit method: for the explicit method there are in fact different 

rules, as we will see later). Wanting to see what happens to the system in 1/10 of a 

second, we will use a ∆t equal to 0.001 s. It must be said then that, usually, the calcu-

lation codes adapt the step according to the speed of convergence of the solution, try-

ing to increase it as much as possible to reduce the calculation time; but we must be 

careful, because some peaks that the code cannot realize could be "lost": for this rea-

son it is good practice also to set a limit above which it is good that the program does 

not go. 

Finally, if the time history of the force had a particularly "dynamic" trend, the time 

step must be such that it can follow it adequately. As an example, the history of figure 

14.14 lasts approximately 0.5 s and therefore, in base to the cited empirical rule, a 

time step equal to 0.005 s would have to be fine, but we realize that with a step of this 

kind it would not be possible to follow the force in an adequate way. 

In these cases, once the step to be used has been established, it would be advisable 

to carry out the calculation on a simplified model that, at the extreme limit, can only 

contain the nodes, bound to the ground, to which the force is applied and some point 

masses attached to those nodes; this is only to verify if, with the chosen step, it is pos-

sible to reproduce the time history of the force. 

Our example is very simple and consequently a step of 0.001 s is more than ade-

quate. 
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Once the calculation is 

finished, the analysis of the 

results is a bit more articu-

lated than the frequency re-

sponse and certainly more 

than a static one, mainly be-

cause we do not know where 

or when we have, for exam-

ple, the maximum value of 

the Von Mises equivalent 

stress. Watching the anima-

tion of the time history helps 

to identify any response pe-

aks at resonance and to focus 

around that instant of time analyzing the quantities of interest (stresses, displacements,  

reactions forces). Our example, again, is very simple and we expect to find the maxi-

mum values of all quantities around the maximum of the forces. 

 

 

0

50

100

150

200

250

300

350

400

450

0 0.02 0.04 0.06 0.08 0.1

Time [s]

V
o

n
 M

is
e

s
 [

M
P

a
]

Figure 14.15. Contour of the Von Mises stress and time evolution of the same in the point of 

maximum. 

 

 

And so it is: figure 14.15 shows the contour of the equivalent Von Mises stress at 

the instant of maximum value (0.012 s, i.e., 0.02 s later than when the forces reach 

their maximum) and the time trend of the Von Mises stress for the point where the 

maximum is located. 

If we do the same thing for the vertical displacement of a point in the middle of the 

web at the free end we get the results in figure 14.16. 

To summarize: 

 

Minimum vertical displacement:  -7.46 mm 

Maximum Von Mises stress:   414 MPa 

 

Figure 14.14.  Force with rapidly variable behavior. 
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Figure 14.16. Contour dello spostamento in direzione verticale e andamento temporale dello 

stesso nel punto di minimo. 

 

14.3.2 Modal superposition 

As a first step we perform the modal analysis; since in the case of the beam 

clamped at both ends (see § 14.2) 10 modes were sufficient, we start by considering 

10 modes. Table 14.4, similarly to 14.1, contains the corresponding effective modal 

masses and the percentage of the total mass in each direction. We observe that in the 

z-direction, where we expect the maximum response, the percentage is greater than the 

85% given as the minimum value; we should therefore obtain a response very similar 

to that obtained with direct integration. Let's see. Also in the case of modal superposi-

tion we need to indicate a time step and also in this case are valid both the rule of 

thumb and the considerations expressed above. Let's choose a step equal to 0.001 s 

and proceed with the calculation. In figure 14.17 we report the time trends of the dis-

placement and the equivalent Von Mises stress for the same nodes used in the case of 

direct integration and we superimpose them precisely on the latter for a more immedi-

ate comparison. 

 

MODE X-COMPONENT Y-COMPONENT Z-COMPONENT X-ROTATION Y-ROTATION Z-ROTATION

1 4.507E-01 4.133E-28 1.238E-27 2.215E-21 1.665E+04 1.505E+06

2 3.542E-03 5.845E-28 2.939E-26 1.004E-19 2.227E+04 1.323E+04

3 7.255E-28 1.605E-05 5.170E-01 1.588E+06 3.232E+02 1.003E-02

4 1.223E-01 6.581E-29 1.655E-28 4.429E-22 6.693E+03 3.852E+04

5 6.255E-25 8.838E-05 1.191E-01 4.462E+03 7.445E+01 5.524E-02

6 1.017E-02 4.464E-27 5.188E-24 1.201E-19 2.864E+02 3.967E+03

7 1.002E-02 8.873E-28 3.578E-26 1.936E-21 3.815E+03 3.268E+03

8 1.079E-03 4.144E-28 2.247E-27 3.991E-21 4.416E+00 5.536E+02

9 5.669E-23 5.963E-04 2.535E-02 3.113E+03 1.584E+01 3.727E-01

10 1.348E-02 1.210E-22 2.640E-22 4.167E-17 3.496E+02 2.033E+03

TOTAL 6.113E-01 7.008E-04 6.615E-01 1.596E+06 5.048E+04 1.566E+06

% 82.5% 0.1% 89.3% 98.2% 82.4% 99.4%  

Table 14.4. Effective modal masses for the first 10 modes. The sum in the z direction is 89% of 

the total mass. 


