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14.6 Explicit methods 

 

14.6.1 Introduction 

Throughout the text the method used to solve the system of equations generated by 

the various models that we used in the examples is of implicit type. 

However, since some years some FE codes of explicit type (we will see shortly 

what it means) have taken place, purposely studied for the simulation of strongly 

nonlinear dynamic and very short transient phenomena (that is they foresee contacts, 

extended and variable in time, plasticizations and failures), such as for example impact 

events. Through these codes it is possible to simulate shocks (as an example the im-

pact of a bird with the leading edge of a wing or the crash of a car against a barrier), 

explosions (as an example of air bags) or some specific processes such as metal form-

ing, presswork or machining in general. 

The method has a very simple basis. It basically involves rewriting the general equa-

tion of motion 
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in the following way: 
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being {F} the vector of external forces and {I} the vector of internal forces (elastic 

and viscous); in particular we have: 
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From (14.2) the acceleration can be easily derived: 
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If [M] is a diagonal matrix the calculation of its inverse does not present any diffi-

culty and is very fast; [M] is diagonal if the finite elements used for the modeling of 

the mass use the method of the "lumped mass", that is, they concentrate the mass of 

the element in the nodes instead of distributing it over the entire domain of the ele-

ment itself; this approximation does not alter the results in a sensitive way if the mesh 

is adequately dense. 

Known the acceleration at the generic time t it is possible to derive by numerical in-

tegration (for example with Euler's method) the velocity at a subsequent instant: 
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And similarly: 
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We can then proceed to calculate the acceleration at the time t+∆t and so on until 

the time tfin in which we decide to stop studying the phenomenon. 

The method is called "explicit" because in (14.4), (14.5), and (14.6) the unknown 

terms appear only to the left of the equal sign and therefore their determination is very 

fast; in fact, an explicit code takes only a fraction of the total solution time to carry out 

the explicit equations; most of the effort is in calculating the vector {I}, because it is 

still necessary to assemble the matrices [D] and [K] and to carry out the matrix prod-

ucts. 

Clearly the method has some disadvantages; as an example it is not guaranteed the 

convergence of the solution and in order to reduce the risk to obtain wrong results the 

step of integration t must be assumed suitably small (some criteria exist to establish 

which is the maximum t usable). Secondly, it seems obvious looking at (14.4), that in 

order for the method to be applicable it is necessary to have accelerations in play and 

therefore it is not possible to study static phenomena, even if in reality with appropriate 

measures the method can be used satisfactorily also for "almost" static calculations; 

however, given the nature of the solution techniques adopted, a result will always be ob-

tained, but there will be no real guarantee that it is "correct", something instead assured 

with an implicit method, where, if the convergence of the solution is reached, the results 

will be correct, at least within the limits of the quality of the model. 

 

 

14.6.2 Comparison with the implicit method 

Let's make a comparison with the beam used up to here, in particular the exam-

ple in figure 14.12, solving the dynamic case with the explicit method. As men-

tioned, ∆t must be chosen appropriately (we'll see some details later about the cri-

teria on which the choice is based), and the current codes make the selection 

automatically, leaving the user to define ∆t only for special cases. For our beam, 

therefore, we will only have to modify the type of solver to use and launch the cal-

culation. 

Figure 14.23 shows a comparison of the results in terms of Von Mises equiva-

lent stress (for the same point in figure 14.15) and displacement (for the same 

point in figure 14.16). As we can see, the results are different, although definitely 

equivalent from an engineering point of view. We observe, however, that the de-

viation tends to increase as we approach the end of the analysis, and this can be 

explained by the "nature" of the explicit method we mentioned earlier: in particu-

lar, round-off errors add up and, consequently, analyses over long times are af-

fected by larger errors. This explains why the explicit methods are very good for 

rapid phenomena and are not suitable, except for particular measures, for quasi-

static phenomena. 


