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Figure 5.7 shows the finite element model used for the calculation, while figure 5.8 

shows the deformed shape of first buckling mode. From the results file, we find that 

the corresponding buckling load is 268240 N, with an error of 0.2%. 

 

  

Figure 5.7. Finite element model for the axi-

ally loaded cylinder. The constraints are of 

hinge type. The load was applied at the cen-

ter and distributed on the boundary through 

a rigid Multi Point Constraint (MPC) type 

element. 

Figure 5.8. Deformed shape of the first buck-

ling mode. 

 

 

5.4.4 Thin-walled cylinder undergoing pure torsion 

The last example concerns torsional buckling. As it is known in a pure torsion the 

principal stresses are equal in modulus and of opposite value. Therefore, in the direc-

tion in which the main compressive stress occurs (inclined by 45° with respect to the 

axis of the cylinder), a local buckling can be reached bringing the structure to overall 

collapse. 

For this calculation we will use again the cylinder of the previous example and we 

will use the same model in which, clearly, we will replace the axial compressive load 

with a torque. 

By following the procedure given in [3], we derive the value of the shear stress that 

generates the buckling for the cylinder with the geometric characteristics of our exam-

ple: 
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where the coefficient C is obtained from the graph of the figure 5.9 (that interpolates 

some experimental values) as a function of the value of 
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It is derived that C = 169 and therefore τcr = 43 MPa. 

 

Now, using Bredt's for-

mula, we are able to calcu-

late the value of the torque 

that generates the torsional 

buckling. 
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Being 2R⋅π=Ω  we get: 

 

Mtcr = 13508848 Nmm. 

 

 

 

 
 

Figure 5.10. The cylinder in figure 5.7 is now 

loaded in torsion and the mesh has been re-

fined. 

Figure 5.11. First buckling mode for the cyl-

inder undergoing torsion. 

 

Figure 5.10 shows the model; compared to that of figure 5.7, the mesh has been re-

fined to avoid an overestimation of the stiffness (see Chapter 6) and we have replaced 

the axial force with the torque; figure 5.11 shows the first buckling mode of the cylin-

der in discussion. The critical torque value is equal to 14884000 Nmm, with an error 
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Figure 5.9. C-ZL diagram. 
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of just over 9%. However, given the nature of the C coefficient, it cannot be ruled out 

that the agreement is actually much better. 

 

 

5.5 Notes on instability in nonlinear domain 
 

If the limitations posed by the linearity assumption are too restrictive (for example, 

because it is suspected that, under the action of loads, the material may exceed its elas-

tic limit at some point in the structure), it is necessary to use a non-linear calculation. 

In this case it is possible to take into account all forms of non-linearity, presented later 

in the text in Chapters 11, 12 and 13. For example, for the cylinder subjected to exter-

nal pressure, taking into account the follower effect (i.e. the forces that "follow" the 

structure during its deformation) for the pressure load would allow a better agreement 

with the theoretical results. 

Clearly the non-linear calculation is the one that comes closest to reality. Not only 

that, in this way it is also possible to evaluate what happens in a structure when only 

one part of it has buckled; obviously it doesn't make sense to adopt this procedure on a 

single beam subjected to an axial load of compression, because in this case it would 

collapse. However there are cases in which a part of the structure becomes unstable, 

without the whole collapsing catastrophically. For example, the plates of thin-shell 

ribbed structures can reach instability: in this case the plates are no longer able to 

withstand the load, but if this has a way to flow through other parts of the structure 

(the ribs) then there is no collapse of the whole. This is where the post-buckling analy-

sis becomes interesting, which basically represents the calculation of how loads are 

redistributed within the part of the structure which has remained stable. 

In Chapter 11 we will examine some examples of post-buckling structures. 

 

 

 


