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Figure 6.38. Displacement and longitudinal stress with the beam loaded in the shear center. 

 

Figure 6.38 presents the results for this new condition; now the beam exhibits the 

typical bending behavior, but the values of the longitudinal stress are in agreement 

with the theoretical results only in the middle, while at the clamp they still present, al-

though in a less marked form, a variation along the transversal direction, in this case 

certainly attributable to the presence of the constraint. 

We have already said that some pre/post-processors are able to manage the beam 

sections, calculating the inertial characteristics starting from the geometric dimen-

sions; many go further and, at least for some types of section, are able to determine the 

shear center. It is necessary, however, to pay much attention to what the calculation 

code then does, i.e. it is necessary to verify whether or not the section is translated in 

the shear center or if it is left on the centroidal axis; in fact, as we have seen, the re-

sults can change a lot, for some sections, in the two cases. 

Finally we underline that in carpentry constructions the beams are connected with 

each other (by riveting, bolting or welding) in such a way that it is impossible to en-

sure that shear loads are applied in the torsion centers of the beams themselves. There-

fore generally this type of beams will be subject to the phenomenon we have seen; a 

beam element schematization could filter this effect making it necessary an accurate 

results interpretation phase, downstream of the finite element calculation. 

 

 

6.3.3.6 Large-curvature beam 

In the last example of this paragraph we want to calculate the beam of figure 6.39, 

loaded at one end with a force F = 300000 N and clamped at the other. The most 

stressed section turns out to be the one that is found to the greater distance from the 

line of application of the force F; in this section are present an axial force equal to 300 

kN and a bending moment equal to 120000 kNmm. 

If we suppose to consider the beam as straight (i.e., as if the height h of the section 

were negligible with respect to the radius r0 of curvature of the centroidal fiber), the 

maximum stress in the most loaded section holds: 
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Being Iyy = 60000000 mm
4
 and A = 18000 mm

2
, at the intrados and extrados of the 

beam the following stress values are obtained: 
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However, the value of h is 

comparable with that of r0 and 

therefore it is not permissible to 

consider the beam as if it were 

straight. One of the effects that 

occurs in beams with large curva-

ture undergoing bending is the 

displacement of the neutral axis: 

in other words, the fibers with 

zero stress no longer lie on the 

centroidal axis; this results in a 

different distribution of stresses 

within the section, which alters the 

minimum and maximum values. 

In the most stressed section, the 

value of the stress in the tangential 

direction that is obtained from the 

second-order theory valid for large-curvature beams is given by the following rela-

tionship: 
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where rn is the radius that locates the neutral axis with respect to the center of curva-

ture and r is the generic radial coordinate at which the stress is evaluated. Being: 
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and placing r = ri = 300 mm we obtain the value of the tangential stress at the intrados 

of the beam: = σ 257 MPa. 

Instead, placing r = re = 500 mm we obtain the value of the stress at the extrados of 

the beam: = σ -154 MPa. 

 
Figure 6.39. Large curvature beam 
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The remarkable difference between the two cases (straight beam and curved beam) 

is self-explanatory. Wanting to perform a numerical calculation, we could naively 

think that the implementation of a beam element model may be sufficient to capture 

this important effect: nothing could be more wrong. And dangerous. 

We then build the beam element 

model, in this case taking advantage of 

the software's ability to handle a rectan-

gular section. Figure 6.40 shows such a 

model, while in figure 6.41 we illustrate 

the results obtained. 

As it can be seen, the agreement with 

the results obtained with the first-order 

theory is perfect, as was to be expected. 

The fact of having exploited the capa-

bilities of the computational code and 

the pre/post-processor to handle the sec-

tions for beam elements does not allow 

to cross the intrinsic limit of this type of 

element. 

We observe then the displacement that 

the force application undergoes in the 

direction of the force itself: u2 = 2.49 

mm; this information will be useful for 

the comparison with the next model. 

 

  
Figure 6.41. Displacement in the vertical direction and stress along the (curvilinear) axis of 

the beam. 

 
Figure 6.40. Beam element model for the 

large curvature beam; elements are shown in 

red. The section is centered at the center of 

gravity. 
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We construct therefore, more realisti-

cally, a model of the beam using brick 

elements (figure 6.42) because of the 

elevated thickness (even if plane strain 

elements could be employed) and we 

execute on it the calculation. Figure 6.43 

shows the contour of the displacement in 

the vertical direction and of the circum-

ferential stress in a cylindrical reference 

system suitably constructed in the center 

of the circular crown. Comparing these 

data with the manual calculation per-

formed in accordance with second-order 

theory, we conclude that the brick-

element model is adequate to capture the 

effect of the neutral axis shift. 

 

  
Figure 6.43. Displacement in the vertical direction (left) and stress along the circumferential 

direction of a cylindrical reference system (right). 

 

A further consideration concerns the displacement of the force application point, 

which in this case is uz = 2.5 mm. 

We can therefore state that, while the error on displacements with the beam element 

model is practically null, indicating how the beam stiffness provided by the beam ele-

ment model is very close to the real value, the error on the maximum stress is 19%. 

 
Figure 6.42. Brick element model for the large 

curvature beam. 
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At this point, some observations are necessary. While through the shell and brick 

element models it is possible to take into account the real constraint, load and geomet-

ric conditions, allowing to capture effects such as the torsion, which we could define 

"parasitic", illustrated in the example of the C-section beam, or the displacement of the 

neutral axis, highlighted with the last example, with beam elements this is not possible 

due to their mathematical formulation: as already mentioned (see Chapter 1) they are 

one-dimensional elements that lie along the centroidal axis of the beam they must 

simulate; moreover, except for particular implementations, they are based on the the-

ory valid for beams with a rectilinear axis. An increase of the mesh density, which in 

other circumstances would bring closer to the "exact" result, in this case would serve 

no purpose. 

All this does not mean that beam elements should be banned from numerical analy-

ses of structures, quite the contrary. Their usefulness is notable and beyond discussion 

in numerous cases, such as in modal analyses, where the values of the stiffnesses and 

masses are fundamental, while local effects are less important, as we saw in Chapter 4. 

Here we only wanted to draw attention to the prudence that must be adopted when at-

tempting to simplify a calculation by reducing the structure to be analyzed to a series 

of "equivalent beams": many important effects that influence the real states of defor-

mation and stress may be lost, completely falsifying the results of the analysis. 

 

 

6.3.3.7 The skinning technique 

Although the choice of the brick element for the large-curvature beam is the correct 

one, this type of element also has inherent errors. Let's see which ones. 

In figure 6.44 we illustrate the three principal stresses for the element extracted at 

the intrados of the large curvature beam in the most stressed section. The representa-

tion is by means of arrows indicating the intensity and direction of the quantities under 

examination (in the Gauss points; this is the reason why the value in the figure at the 

top right is less than that shown in figure 6.43 - see § 3.9.5). 

As it can be observed, and as we know, the three main stresses are orthogonal to 

each other. However, we expect that, at least on the "free" face of the considered ele-

ment (i.e. the one in contact with the air), the intermediate principal stress is zero, be-

cause on the surface of a solid not submitted to pressure, the stress state must be plane 

for equilibrium. But this is not the case. And this is an inherent "error" in FEM: the 

indefinite equilibrium equations (see Appendix B) are not always met. However, it 

must be said that the equilibrium equations of the forces at the nodes connecting the 

elements are instead respected. 

This error tends to decrease the finer the mesh is; in fact, if we double the number 

of elements in the radial direction, we obtain the results of figure 6.45, where the value 

of the intermediate principal stress has almost halved. 

A method to overcome this drawback without necessarily having to refine the mesh 

(which would not be necessary, given the remarkable agreement with the theoretical 

results obtained with the base model) is to resort to skinning, i.e. the covering of the 

solid with membrane elements (see § 1.9), very thin in order not to alter the stiffness 


