
 

B APPENDIX B 

The stiffness matrix for the 

plane stress 3-node element 
 

 

B.1 Introduction 
 

As already mentioned in other parts of the text, the result of an linear elastic struc-

tural problem obtained with FEM, once the structure to be calculated has been defined 

(geometry, materials, internal constraints, boundary conditions), is nothing but the so-
lution of the following matrix equation: 

 

     FKu
1  

   (B.1) 

 

being {u} the vector of (unknown) displacements of predefined points, the nodes, of 

the structure, {F} the vector of forces applied at some (or even all) nodes, [K] the so-
called global stiffness matrix of the structure itself. 

 

 

B.2 Finite Elements 

 

As mentioned in Chapter 1, finite elements are domains in space (from 1 to 3 di-

mensions depending on the type of element) within which the solution of the elastic 
problem is approximated. It is therefore clear that the smaller (and therefore the more 

numerous) the elements that model the structure, the better the accuracy of the solu-

tion; at the theoretical limit, an infinite number of finite elements guarantees the exact 
result. It is therefore the experience of the structural engineer that intervenes in estab-

lishing which "density" of elements is suitable to provide an engineering-correct value 

for a given problem. In order to solve (B.1), it is necessary to know the matrix [K] 
which, as we have said, is a function of the geometry and the material that makes up 

the structure. The matrix [K] is constructed by the calculation code by assembling in 

an appropriate way the various matrices [Ke] of the single elements in which the entire 

structure has been subdivided. 
In the following paragraphs we will see how to determine [Ke] for a 3-node triangu-

lar element in a plane stress state. 

 
 

B.3 Shape functions for the plane stress triangular element 

 
Shape functions are polynomials that describe the displacement domain of points 

within the element in relation to the displacements that the nodes of the element un-

dergo. 
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The degree of this polynomial 
depends on the number of nodes (in 

addition to the nodes at the vertices, 

there can be elements with nodes 
along the sides). The higher the de-

gree of the polynomial, the better 

the behavior of the element, as it 

will be clearer in the following. 
Consider a point P belonging to a 

triangular element with 3 nodes 

(see figure B.1). 
For the point P in question we 

may write (see also § 7.3): 

 

 
ux(P) = a1 + a2x + a3y 

(B.2) 

uy(P) = a4 + a5x + a6y 
 

where x and y are the coordinates of point P and ai (i = 1....6) are constants to be de-

termined in the following way. 
If we assume that we know the components of the displacement of the nodes of the 

element, by virtue of (B.2), we will have: 

 

u1x = a1 + a2x1 + a3y1 
u1y = a4 + a5x1 + a6y1 

u2x = a1 + a2x2 + a3y2 

u2y = a4 + a5x2 + a6y2 
u3x = a1 + a2x3 + a3y3 

u3y = a4 + a5x3 + a6y3 

 
where ujx and ujy (j = 1...3) are the displacement components of node j, xj, yj are the 

coordinates of node j. 

In matrix form we will write: 
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     aNu nod   

 
Figure B.1. Point P belonging to a triangular ele-

ment in a plane stress state. 
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from which we derive: 
 

         nodnod

1
uΦuNa  

 

 

Writing the matrix [] in a way that explicitly expresses the rows we will have: 
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   (B.3) 

 
Substituting (B.2) into (A.11) (see Appendix A) and performing the derivatives we 

obtain the components of the strain tensor: 

 

xx = a2 

yy = a6 

xy = a3 + a5 
 

Since the ai are constants it remains clear why this type of element is called Con-
stant Strain Triangle (CST). Therefore, in order to adequately capture the strain field 

in a structure modeled with this element, it is necessary to use a large number of them. 

Elements with polynomials also containing quadratic shapes (e.g., the 6-node triangle) 
would see a variable strain field within the element itself, providing better sensitivity 

to stress gradients. 

Since, by virtue of (B.3), we have: 

 

     nod22 uΦa   

     nod33 uΦa   

     nod55 uΦa   

     nod66 uΦa   

 

we can write: 
 

   nod2xx uΦε   

   nod6yy uΦε   

   nod53xy uΦΦγ   

 

Or, in a more compact form: 
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B.4 The stiffness matrix for the CST element 
 

To determine the stiffness matrix of the element in discussion we will use an energy 

method, starting with a simple example. 
The internal work Wi of a rod with an area A, a length L and a Young's modulus E 

subjected to a monoaxial stress  with a corresponding strain  is equal to: 
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Being  =  . E and V = A 
.
 L 

Moreover is 
L

ΔL
ε , so we can write: 
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The external work We done by the external force F to apply the displacement L is: 
 

ΔLF
2
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Finally, because it must be Wi = We, we have: 
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The equation above allows us to calculate the external force F required to move the 

end of the rod by the quantity L: 

 

ΔLk
L

ΔLAE
F 


  

 

We observe that 
L

AE
k


 has the dimensions of stiffness: [N/m]. 

 


