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although with a continuous model the method based on the fluxes is however possible. 

In any case, whether we are dealing with continuous or discontinuous seams, we will 

have to be in the situation, already seen in Chapter 3, shown in figure 10.5. 

The discussion of spot welding basically falls into the case of rivets. With a suitable 

model (continuous with flux extraction or discontinuous with force extraction at the 

connection points), the forces acting on the single point are compared with the allow-

able values for the button. And precisely herein lies the biggest problem: the strength 

of the weld spot is highly dependent on the process by which it is made, and therefore 

it is necessary to have experimental data to be able to judge the integrity of the joint. 

 

 

10.3 Fatigue assessment for homogeneous and isotropic materials 
 

10.3.1 Continuous structure parts 

Since the discovery of the material fatigue phenomenon dates back to quite recent 

times, still today there are several uncertainties in the calculation and determination of 

the fatigue strength of a given structure, even if it is made of homogeneous and iso-

tropic material. 

 

10.3.1.1 Classic Method 

The classical method, i.e. 

based on hand calculations, 

proceeds as follows. 

Consider the notched bar, al-

ready seen in Chapters 6 and 9, 

whose geometry we report here 

in figure 10.6. 

Let the load be a fatigue type 

axial force, cycling from zero to 

a peak of 75000 N. We know 

(see Chapter 6) that the stress in 

the smaller section is σ2 = 208 MPa. Suppose that the material constituting this plate 

has a limit, on specimens without notches, at infinite life and for an alternating sym-

metrical load from zero (i.e., with cycles that change the stress from tensile to com-

pressive), equal to: 

 

MPa255σFAb =  

 

In order to be able to determine the allowable limit for our type of fatigue and for 

the notched geometry of the bar, it is necessary to construct the Goodman-Smith dia-

gram, for the plotting of which we refer to Machine Design texts [11]. Figure 10.7 il-

lustrates the diagram we obtain with the data in our hands: 

Figure 10.6. Notched bar subjected to an axial force 

F = 75000 N cycling from zero. 
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45.1K t =   ( ) 38.11Kq1K tf =−⋅+=  

 

having assumed the notch sensitivity factor q = 0.85 (q is the greater the higher the 

mechanical strength of the material or, better, the closer the yield and ultimate limits 

are to each other). We observe that, as long as q < 1, the fatigue notch coefficient Kf is 

less than Kt. Even if q = 0 (total insensitivity to notching: extremely ductile materials) 

we would have Kf = 1. Vice versa, if q = 1 (total sensitivity to notching: extremely 

brittle materials) we would have Kf = Kt. The fatigue notch coefficient is used, to-

gether with two other reduction factors, in the following way to "reduce" the experi-

mental value σFAf obtained on unnotched specimens: 
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having assumed for b2 (surface finishing factor) a value equal to 0.9 and for b3 (di-

mensional factor) a value also equal to 0.9 (we will come back later on the coefficients 

b2 and b3). 

The red line represents the 

ratio: 
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maxK
σ
σ

=  

 

Since averagemax σ2σ ⋅=  we 

get K = 2. 

The allowable value is ob-

tained from the intersection of 

this line with the blue poly-

gon. 

From the Goodman-Smith 

diagram we can then obtain 

MPa230σ lim = . With this 

value we can finally calculate 

the fatigue safety coefficient 

for the plate in discussion: 
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In the "classical" method, 

therefore, the fatigue notch 

coefficient is used to lower the 

value of the allowable stress. 

Goodman Smith Diagram

-400

-300

-200

-100

0

100

200

300

400

-400 -300 -200 -100 0 100 200 300 400

Sigma average [MPa]

S
ig

m
a
 m

a
x
 [

M
P

a
]

Goodman-Smith

Current stress

 

Figure 10.7. Goodman-Smith diagram of the material 

used for the bar. Information on rupture (σRt) and yield 

(σYld) is also required for plotting. The area enclosed by 

the blue line is the range within which the stress cycles 

must be contained in order to have a safety coefficient 

greater than or at the limit equal to 1. The red segment 

represents the current cycle and its intersection with the 

polygon in blue gives the limit value, equal to 230 MPa. 
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This in a finite element calculation is not possible, since, as we have seen, the method 

is able to catch the real stress distribution. Let us then see how fatigue verification can 

be done when the results are obtained from a finite element model. The only knock-

down coefficient we take into account is the one related to the surface state (b2); we 

will verify a posteriori if neglecting b3 (or better having assumed it equal to 1.0) is le-

gitimate or not. We will have: 

 

MPa229bσσ 2FAbFAFEM =⋅=  

 

With this value, we obtain the Goodman-Smith diagram shown in figure 10.8 and 

we derive: 

MPa316σ FEMlim =  

 

In figure 10.9 we then report the value of the stress that is obtained from the model 

(see also Chapter 6). Ultimately, the following value of the safety coefficient is calcu-

lated: 
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As we can see, the value of the safety coefficient obtained with the finite element 

model is lower than in the previous case, indicating that it is more conservative. This 

tendency is quite general and can be attributed to the fact that basically the notch sen-

sitivity factor q is not considered, or rather it is assumed to be equal to 1. This discrep-

ancy clearly increases the more ductile, and therefore the less sensitive to notching, 

are the materials used. 

Goodman Smith Diagram
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Figure 10.8. Goodman-Smith diagram plotted 

for the FEM calculation. Clearly σRt and σYld 

remained unchanged. 

Figure 10.9. The maximum stress is 

σFEM = 311.2 MPa. 
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However we know, having calculated Kt = Kf, that in reality the stress to be consid-

ered for the fatigue calculation is lower than that determined by the model and there-

fore we could think of lowering the value of σFEM through the ratio Kf / Kt = 0.95, thus 

obtaining: 
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that is a value more in line with what we have calculated by hand. We observe, how-

ever, that proceeding in this way would lose all the advantages of the Finite Element 

Method, since we would have to determine Kt every time. Since, proceeding in the 

way we have seen, we are in favor of safety, it is more convenient to follow the ap-

proach shown. 

 

10.3.1.2 The Gough-Pollard criterion 

In practice, then, it is seldom that we have to deal with a simple stress state such as 

the monoaxial stress state now seen; even if in the notch zone there are also other 

components of the stress tensor, the one examined remains essentially a monoaxial 

stress state. But how can we proceed when we have to treat a complex stress state? 

The Gough-Pollard criterion illustrates how to do when we have both a σ and a τ, as it 

happens in the case of transmission shafts in general: next to the σ stress generated by 

the bending we have also the shear stress τ produced by the torque. We could extend 

this criterion, which has a very good experimental confirmation, also to cases not 

strictly inherent to transmission shafts or axles (for example for screws that also work 

in shear), but if only we have a case in which, in addition to one σ and one τ, we also 

have another stress σ, clearly in the direction orthogonal to the first, we no longer 

know what to do; that is, if we are faced with a state of plane stress in which all three 

components σxx, σyy and τxy are non-zero, checking fatigue strength at that point seems 

difficult. Fortunately, this is the most complicated condition we can deal with, because 

in any case we know that, apart from particular situations such as bodies in contact, 

the greatest stress in an organ is on its surface, where the stress state is planar by defi-

nition (an exception is constituted by pressure vessels, where on the internal surface, 

in contact with the fluid, the stress state is triaxial). 

The Gough-Pollard criterion calculates an equivalent σGP stress as follows: 

 

2
max

22
maxGP τHσσ ⋅+=  

 

being 
lim

lim

τ

σ
H = ; the two limit values are derived from the corresponding Goodman-

Smith diagrams, i.e. it is necessary to create one for the shear stress as it is done with 

the σ. 

The safety coefficient is then calculated as follows: 


