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membrane component from "arising", since there is no constraint that can counteract 

it. With a linear calculation this effect is obviously lost. 

By means of a simple example 

we have highlighted an important 

aspect of the automatic calculation 

of structures: in certain situations 

the possibility of taking into ac-

count geometric nonlinearities can 

make valid a structural project that 

the linear calculation would have 

discarded, while in other circum-

stances there is no practical benefit 

in using nonlinear calculation tech-

niques, more refined and expensive 

in terms of hardware resources en-

gagement. 

The experience of the structural 

engineer is needed to determine 

which way to proceed in the calcu-

lation of a structure. Finally, if a 

geometric nonlinear solution is re-

quired, it may be convenient to use 

substructuring (see Chapter 7). Many codes on the market today are able to manage 

superelements in a totally transparent way to the user, creating them within a nonlinear 

analysis. If, for example, we have a structure which, due to its geometric conformation 

and the load conditions to which it is subjected, sees only one or more of its parts un-

dergoing large displacements, we can think of inserting the part undergoing small dis-

placements in a single internal superelement, leaving only the nonlinear part or parts 

on the outside. In this way the calculation code, once assembled the stiffness matrix of 

the superelement (linear) does not "touch" it anymore during the iterations, which then 

will be faster as they are performed on a smaller number of degrees of freedom. It is 

the calculation code itself, once it has reached convergence, to "expand" the results to 

the superelement. The only difficulty for the user is to decide which part will be en-

closed in the superelement and which will remain outside. 

 

 

11.4 Post-buckling 
 

At this point we are able to analyze situations that may lead structures to work be-

yond the load of elastic buckling (post-buckling). This type of condition is usually im-

properly defined "non-linear buckling", thus implying that a nonlinear analysis with 

large displacements is required to investigate this phenomenon. In fact, the phenome-

non is generally associated with geometric nonlinearity, but it is not excluded that 

there may also be plasticization of one or more zones and/or contact with other parts 

of the structure. 

 

Figure 11.16. Nonlinear calculation with hinge-

simple support constraints: displacement in 

the longitudinal direction. 
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11.4.1 Beam in compression 

To introduce this particular structural problem we will again use the beam used in 

the previous example. The geometric characteristics are those of figure 11.1, while the 

constraint conditions see a hinge at one end and a simple support at the opposite end. 

In this way the condition shown in figure 11.17 is achieved. 

Under these assumptions, the 

critical buckling load is (see 

Chapter 5): 
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The finite element calculation, 

carried out according to the methods indicated in Chapter 5 for linear buckling, gives a 

value practically identical to the one calculated above and therefore we will not focus 

further on the linear aspect. In order to perform a post buckling analysis, it is first nec-

essary to perform a calculation step to "suggest" to the code what deformation the 

structure will tend to assume under load. 

In the case of our beam it will be 

sufficient to apply, for example, a 

very small pressure value to make 

the beam slightly deflect (in cases 

where it is not easy to establish the 

shape of the buckling mode it is 

sufficient to perform a linear elastic 

buckling calculation). This is done 

because otherwise the phenomenon 

cannot occur numerically, as the 

model of the structure is "perfect" 

and could never reach collapse. A 

second precaution is to apply not a 

force, but a displacement; this is 

because the structure, once unstabi-

lized, cannot react to a load greater 

than the critical one. If for example 

in our case we applied a force F > 

Pcr the structure would be labile and 

the solution could not reach con-

vergence. Vice versa by imposing a 

"controlled" displacement this does not happen. However the discourse will be clearer 

once the proposed example is studied. Figure 11.18 contains the beam " predeformed" 

by a uniform pressure p = 0.001 MPa. As it can be observed the deflection at the cen-

ter of the span is about 0.15 mm. 

Following the application of the pressure load, an axial displacement of 1 mm is 

imposed on the simply supported end such that the beam is compressed. The deforma-

 

Figure 11.17. Constraint and load conditions for the 

beam. 

 

Figure 11.18. "Predeformed" beam. The vertical 

component of the displacement is plotted here (am-

plification factor = 50). 
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tion of figure 11.19 is obtained. Now we can observe a deflection at the center of the 

span of almost 9 mm. Clearly the axial displacement of the simply supported end will 

be equal to 1 mm. From these data we are still not able to understand if the beam has 

buckled or not. 

 

  
Figure 11.19. Left: displacements in the z-direction; right: displacement in the longitudinal 

direction (amplification factor = 1.0). 

 

We can say that, in a lin-

ear calculation hypothesis, 

imposing a displacement of 

1 mm on the beam gener-

ates a deformation ε = 

1/200 = 0.005 to which cor-

responds a stress 

MPa1030E =⋅ε=σ  that 

would ultimately give a 

force N41200AσF =⋅=  

that is well beyond the criti-

cal load of the bar. But what 

happened in reality? Let's 

try to graph the reaction 

force in the axial direction 

as a function of the dis-

placement imposed on the 

simply supported end. We 

obtain the curve of figure 11.20. 

The value of the reaction force at the end of the loading step is 669.5 N, very close 

to that calculated with Euler's formula. It is not surprising that this number is lower: 

we have in fact "predeformed" the beam to simulate a straightness defect. If we were 

to perform a linear buckling calculation on the already deformed beam, the value de-

termined in the beginning would also tend to decrease.However, we must observe that 

the curve begins to deviate from linearity at a much lower value, i.e. already around 
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Figure 11.20. Reaction force in the axial direction plotted as 

a function of the displacement imposed on the simply sup-

ported end. An asymptote is clearly distinguishable. 
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550 N: we can therefore state that the linear calculation produces non-conservative re-

sults and that, therefore, if we do not apply a post-buckling analysis, it is better to keep 

high safety coefficients (at least equal to 1.5, unless we then resort to physical tests). 

Finally, figure 11.21 contains the stress contour in the longitudinal direction. Clearly 

there is a bending stress, preponderant, in addition to the membrane component: 
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Obviously, the σm we obtained from figure 11.21 is equal to the reaction force 

(669.5 N) divided by the area of the section (40 mm
2
). 

In any case, the stress is definitely lower than that, purely membra-nal, which 

would occur if the beam did not become unstable (and equal to 1030 MPa, as seen). 

We then observe that if the mate-

rial works below its yield value, 

removing the load would return the 

structure to its original condition. 

At this point it is clear why in a 

calculation of this kind it is not 

possible to apply directly the force 

to which the structure is supposed 

to resist: we have in fact seen that 

the beam was able to react only up 

to a certain value of the force F, 

even if at its extreme the imposed 

displacement continued to in-

crease. A force "out of control" 

would not have led to the conver-

gence of the solution. And this 

happens because the applied load, 

since the structure has become unstable, has no way to "flow" through other parts. We 

recall that a labile structure has a non positive-defined stiffness matrix and therefore, 

in practice, the application of a force greater than the critical load is assimilated to at-

tempting to solve an unconstrained structure. The imposition of a displacement, on the 

contrary, implies the application of a constraint (in particular a constraint on the de-

gree of freedom become labile) and this results (as reported in Appendix B) in the 

elimination of the rows and columns of the stiffness matrix corresponding to the de-

grees of freedom constrained (in reality many software use the "penalty method", 

which consists in attributing to the constrained degrees of freedom very high stiff-

nesses instead of eliminating the corresponding rows and columns; by doing so there 

is the advantage of not having to partition the matrix for the calculation of the reaction 

forces, but the displacement of the constrained degrees of freedom can never be "nu-

merically" zero). This is the reason why with the application of a load the solution of 

the beam in compression does not converge while imposing the displacement to the 

simply supported end the calculation has a positive outcome. If we had a structure 

 

Figure 11.21. Stress in the longitudinal direction. 

There is a significant bending component against a 

modest membrane one. 
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consisting of several components and one of them went into buckling it would not be 

said that the structure as a whole would collapse, as we will see in the next example, 

where, for this reason, even with the application of a force the calculation converges. 

 

 

11.4.2 Planar frame 

Let's suppose we have the planar frame shown in figure 11.22 through the related 

beam-type finite element model. From a first linear buckling analysis we find that Fcr 

= 10512 N. Clearly the element that becomes unstable is the diagonal A, as we can see 

from figure 11.23. We want to see what happens to the structure when we apply an 

almost double force F = 20000 N. 

 

  
Figure 11.22. Planar steel frame. The sides 

of the square are 500 mm long; the diameter 

of the beams placed along the sides is 20 

mm while the diameter of the two diagonals 

is 10 mm. The beam elements are shown 

with their actual geometry. 

Figure 11.23. Linear calculation results: the 

first buckling mode says that the load that 

instabilizes the diagonal A is 10512 N (am-

plification factor = 50). 

 

We expect that the diagonal A, which certainly works in compression, will at some 

point become unstable, as predicted by the linear analysis. However, the diagonal B, 

which instead works in traction, will not buckle and therefore the structure as a whole 

may not even collapse, despite having one element buckled. 

Also in this case it is necessary to "suggest" to the code that the diagonal A will 

buckle; we will do this by applying a modest force (for example 10 N) in the central 

point of the diagonal itself and directed perpendicularly to the plane of the truss, that is 

along z (the direction according to which the buckling will occur is obtained from the 


