
 

2 CHAPTER 2 

Modeling of boundary 

conditions 
 

 

2.1 Introduction 

 

Once the finite element model is built, it is necessary to impose the appropriate con-

straint and loading conditions; the boundary conditions tell the calculation program 

the points where the external forces are applied and where they are reacted. 

The application of the constraints is generally more " tricky" than the application of 

the loads: in fact a model constrained in a wrong way can make the solution of the 

system of equations impossible. It is necessary, as we will see shortly, to ensure that 

the distribution of constraints is such that the structure is not labile; this means that all 

acts of rigid motion must be prevented, both for the complete model, and for a part of 

the model with respect to another (elimination of internal mechanisms). 

Furthermore, the various element types we discussed in Chapter 1 have different 

degrees of freedom (DOF) at their nodes: for example the 3D brick element has only 3 

translational DOF, while the shell element has 6, having also 3 rotational DOF. There-

fore, strictly speaking, in a brick model it would be necessary to block all rotational 

DOF; however, many calculation codes impose constraints automatically when they 

"read" that certain nodes have elements without stiffness in some DOF. We will return 

to this aspect in Chapter 6. 

 

 

2.2 Constraint conditions 
 

We have said that a correct application of the constraint conditions must first of all 

ensure that the structure is not labile: this means that any type of mechanism must be 

eliminated, otherwise the resulting stiffness matrix is non positive defined and there-

fore the problem cannot be solved numerically. A fairly classic example is represented 

by solid element models. If, for example, one constrains all the nodes of an edge in the 

six degrees of freedom, one can be convinced of having created a clamp, but this is not 

so; in fact, as we mentioned above, solid elements do not have rotational stiffnesses 

and therefore are not able to react with concentrated moments. The result is a cylindri-

cal hinge, with consequent instability. Generally this type of error is not very danger-

ous because the calculation codes, if they don't come out with an error message, at 

least warn the user that arbitrary stiffnesses have been added to make the matrix posi-

tive defined and to continue then in the solution of the matrix equation. It will be up to 

the structural engineer to understand what has generated the problem. 

This should also make us understand that finite element models must always be 

constrained (exceptions are the calculation of eigenfrequencies in free-free conditions 

- Chapter 4 - and dynamic calculations - Chapter 14); it does not matter if we apply a 
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balanced system of forces, because the calculation program has no way of "knowing", 

until it has solved the system of equations. On the contrary, the application of a system 

of self-equilibrated forces (i.e. actions and constraint reactions previously calculated 

with another method) can be a way to verify the success of the calculation, checking 

that on the appropriate distribution of constraints (which in this case must be rigor-

ously statically determinate) the values of the reactions are null. 

 

Another error may be 

caused by the improper exten-

sion of De Saint Venant's the-

ory valida for one-dimensional 

bodies; let's take the beam in 

figure 2.1 and stress it with a 

tensile force F = 1000 N. 

Solid Mechanics tells us 

that the stress in the vertical 

direction, being a uniaxial 

stress state, should be zero in 

all points of the rod. However, 

if we observe figure 2.2, we 

realize that, in proximity of 

the constraint, such value is 

far from zero, while more we 

approach the other extremity 

and more effectively the 

transversal solicitation tends 

to be null. What has hap-

pened? In this case the con-

straints that have been given to 

the edge nodes prevent trans-

verse contraction (as can be 

seen from the deformation, 

amplified by 200 times) and 

consequently give rise to the 

stress that can be seen in fig-

ure 2.2. In fact, if we now take 

the same model and, with the 

appropriate constraint condi-

tions, we allow all the nodes 

of the vertical edge (except one to eliminate lability!) to slide in the vertical direction 

we get the vertical stress contour shown in figure 2.3. Notice how now, apart from the 

numerical "dirt", we actually have a null value for this stress component. It must be 

underlined that the most correct case is the first, because in reality the second distribu-

tion of constraints is difficult to obtain, while a weld, for example, is well represented 

by the first condition. 

 
Figure 2.1. This beam is made of steel. At one end it is 

constrained with a clamp, while at the other end it is free. 

 

Figure 2.2.  Vertical stress distribution: the maximum 

value of this quantity is 34.7 MPa and corresponds to 

about 30% of the longitudinal stress (100 MPa). 2D 

plane stress elements were used for this model. 
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It could be objected that, since the 

load is applied along the beam axis, it 

should not be necessary to constrain 

even one of the transverse DOF any-

way; similarly to what has been said 

about the system of self-equilibrated 

forces, also in this case the code should 

in any case invert a non positive de-

fined matrix and this is not possible. 

We therefore reiterate that, at a mini-

mum, it is always necessary to apply a 

non labile statically determinate con-

straint system. 

Perhaps it is unnecessary to point 

out that with a beam-element model 

this effect related to non-zero trans-

verse stress in proximity to the con-

straint does not occur. 

All this to highlight the fact that, 

beyond the possible introduction of la-

bility within the model, to pay atten-

tion in the application of constraints also means thinking about the effect that these 

can have on the structure, on its deformations and on its stress state; even if, generally, 

in the points of discontinuity one tends not to take as valid the stress values produced 

by a finite element model. 

What just stated is also valid 

because very frequently the con-

straints are applied to the central 

node of MPC elements, both to 

represent "sensible" constraints, 

and because the extraction of the 

constraint reaction, being con-

centrated in a single point, is 

immediate; for example, if MPCs 

were not used to constrain the 

suspension arm shown in figure 

2.4, it would be on the one hand 

impossible to simulate the 

spherical hinge type constraint 

and on the other hand it would be 

more complex to extract the constraint reaction. 

It is clear that not only is it essential to apply formally correct constraint conditions, 

but it is also necessary to ensure that what is being modeled has a physical match; for 

example, if an organ is constrained by bolts, the modeling of the constraint must allow 

free rotation around the screw axis. 

 

Figure 2.3. Contour of vertical stress when the 

distribution of constraints was changed. Now 

the value along the entire domain is engineer-

ingwise null. 

 
Figure 2.4. Suspension arm for racing car: MPC spi-

ders (fuchsia in the picture) are used to apply point 

constraints (spherical hinges) and concentrated loads. 
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It should also be said that generally the calculation codes, upon request, provide the 

values of the constrained reactions in the restrained DOF; this information is very pre-

cious, both for the calculation of connections, as mentioned in Chapter 1, and to verify 

the correct application of the loads: in fact, the codes usually also provide the resultant 

of the constraint reactions which, together with the resultant of the applied loads, al-

lows precisely this control. Not only that, but if the two results are different (clearly, 

besides slight numerical differences) it means that some force or moment may have 

been "lost" due to numerical errors; we will return to this subject in Chapter 9, when 

we will discuss model validation methods. 

One last aspect that we briefly mention concerns unilateral constraints: a typical ex-

ample are supports. Unfortunately, there is not a "simple" way to realize unilateral 

constraints; in fact, the constraint conditions are limited to make one or more DOF 

somehow "inactive", while the unilateral constraint must keep active or not the DOF, 

to which it is applied, depending on the direction in which it is moving. And this re-

quires iterative techniques typical of nonlinear calculations. 

 

 

2.3 Load conditions 

 

2.3.1 Point loads 

The loading conditions represent the dual case of the constraint conditions; in fact, 

where the displacements (constrained nodes) are known, the forces (constraint reac-

tions) are unknown, while where the forces (loaded nodes) are known, the displace-

ments are unknown. With regard to the application of loads, it is practically impossi-

ble to create situations that can generate numerical errors.The only errors that can be 

made are conceptual ones; for example, as in the case of constraints, applying a con-

centrated moment in a node that belongs to solid elements is wrong (and it is not said 

that the calculation code produces a warning message) because of what has been said 

above. 

Another example that produces seemingly unexpected results is the application of a 

force divided by the number of nodes that make up the segment affected by the load-

ing condition. Let's take again the beam of figure 2.1 and load it with an axial force F 

= 1000 N. The vertical section is divided into four elements (and therefore five nodes); 

the first thing that comes to mind is to apply a force f = 200 N to each node. Figure 2.5 

shows the deformation of the beam in the zone of application of the load; it is possible 

to observe how the nodes at the intrados and extrados deform more than the internal 

ones. This happens because in these positions there is only one element on which the 

nodal force is applied, while for the intermediate nodes there are two elements in-

volved. To overcome this problem it is sufficient to apply half of the force that per-

tains to the central nodes, making sure that the total sum is still equal to 1000 N. In 

this case we will have: 

 

3 central nodes = 250 N each 

2 vertex nodes = 125 N each 


