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designer will have to model all the details required for the construction of the element 

in question, even those that the structural engineer would not insert because of their 

lack of importance from the structural strength point of view. 

Here then that, in case he had to handle a 3D model realized for constructive pur-

poses, the experienced structural engineer would eliminate all the features that would 

make the finite element model uselessly complicated (in some cases the necessary in-

terventions are of such entity that it is convenient to start from zero and build an ad 

hoc model), while the unprepared user, in doubt, would pass to the meshing phase 

without making any modification. This way of proceeding not only lengthens the time 

of solution, using more hardware resources, but can also create problems of numerical 

nature that affect the quality of the results. In fact the automatic meshers, when they 

have to deal with a complicated geometry, tend to create locally strongly distorted 

elements whose presence should be avoided because of the problems that we will il-

lustrate in the following. 

 

 

6.5.1 The condition number for the stiffness matrix 

As already mentioned, the Finite Element Method assembles and solves a matrix 

equation of the type: 

 

{ } [ ] { }uKF ⋅=    (6.3) 

 

where [K] is the global stiffness matrix of the structure, assembled by appropriately 

accounting for all the elements that model the structure itself. 

To our purposes in the following examples we will mainly refer to structures con-

sisting of a single element: the (6.3) is clearly still valid and [K] coincides with the 

element stiffness matrix. 

One method of assessing the "numerical quality" of an element is to calculate the 

condition number of its stiffness matrix, defined as the ratio of the maximum and 

minimum eigenvalues. In other words: 
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C =    (6.4) 

 

The closer C is to unity, the better is the condition; a matrix [K] poorly conditioned 

is very "sensitive", in the sense that small changes in one or more of its coefficients 

create large variations in the results obtained with the (6.3), without altering the other 

factors. For example, let us have the following matrix relation: 
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It presents the solution x = 104 and y = 100. 
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Let us now consider a system very similar to the previous one: 
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The solution of this matrix equation is x = 204 and y = 200; in other words, a 

change of about 1% in one term of the coefficient matrix produces a change in the re-

sults of about 100%. This matrix is ill-conditioned and its condition number is, based 

on (6.4): 

 

C = 202 

 

 

6.5.2 Eigenvalues and eigenvectors of the stiffness matrix 

Let's suppose we want to calculate the condition number for the stiffness matrix of 

the 4-node plane element shown in figure 6.60. Since the degrees of freedom of such 

an element are 8 the matrix will be an 8x8 and the "manual" calculation of the eigen-

values presents several difficulties. 

We can proceed in two ways: the first one consists in requesting the calculation 

program to print on file the matrix and then calculate the eigenvalues by means of 

software able to perform such an operation [101][; the second way instead exploits the 

finite element code itself. In fact if we want to determine the eigenfrequencies of a 

structure the equation to solve is the following (considering null the structural damp-

ing - see Chapter 4): 

 

[ ] { } [ ] { } 0uKuM =⋅+⋅ &&   (6.5) 

 

Where [M] is the mass matrix of the system. 

Leaving aside the mathematical steps leading to the solution of the differential 

equation (6.5), we come to the following relationship: 

 

0]M[ω]K[
2 =⋅−   (6.6) 

 

where ω are the eigenfrequencies of the structure expressed in radians per second. 

By making [M] an identity (or unity) matrix [I] the (6.6) becomes similar to the 

 

0]I[λ]A[ =⋅−  

 

used for the calculation of the eigenvalues λ of [A], with ω2
 = λ. 

Therefore, once performed a modal analysis for the element of figure 6.60 making 

sure that is [M] = [I] (the mass of the element must be equal to 4.0, so that each node 


